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EULER FLOW SOLUTIONS FOR TRANSONIC SHOCK 
WAVE-BOUNDARY LAYER INTERACTION 

BARRY KOREN 
Centre for Mathematics and Computer Science, P.O. Box 4079, I009 AB Amsterdam, The Netherlands 

SUMMARY 
Steady 2D Euler flow computations have been performed for a wind tunnel section, designed for research on 
transonic shock wave-boundary layer interaction. For the discretization of the steady Euler equations, an 
upwind finite volume technique has been applied. The solution method used is collective, symmetric point 
Gauss-Seidel relaxation, accelerated by non-linear multigrid. Initial finest grid solutions have been obtained 
by nested iteration. Automatic grid adaptation has been applied for obtaining sharp shocks. An indication is 
given of the mathematical quality of four different boundary conditions for the outlet flow. Two transonic 
flow solutions with shock are presented: a choked and a non-choked flow. Both flow solutions show good 
shock capturing. A comparison is made with experimental results. 
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1. INTRODUCTION 

An important physical feature for the design of transonic aerofoils is the interaction between the 
possible shock wave@) at the aerofoil and the boundary layers along the aerofoil. In transonic 
aerodynamics a lot of work, both experimental and theoretical, is devoted to this so-called 
transonic shock wave-boundary layer interaction. At the Delft University of Technology, Faculty 
of Aerospace Engineering, a transonic wind tunnel section has been designed and constructed' for 
performing measurements on this phenomenon.2 Limited accessibility to the flow in the wind 
tunnel section inhibits measurements throughout the entire flow field. However, knowledge of the 
entire flow field is important for redesign purposes. This situation motivated a computation of the 
entire flow field. 

As a suitable flow model, the steady 2D Euler equations have been chosen. The Euler equations 
have been chosen because (in the first instance) only inviscid flow solutions with (possibly 
occurring) rotation are of interest. The use of a steady flow model is motivated by the fact that the 
main flow in the wind tunnel section is steady. Further, the use of a 2D flow model is motivated by 
the fact that the wind tunnel section has a curved lower and upper wall, and flat parallel side walls. 

2. COMPUTATIONAL METHOD 

2.1. Discretization method 

The steady 2D Euler equations can be written on the domain Cl c R2 as 
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Here q is the state vector of conservative quantities, and f and g are the so-called flux vectors. The 
primitive quantities used here are the density p, the velocity components u and u and the pressure 
p. For a perfect gas the total energy e is related to the primitive quantities as 

where y is the ratio of specific heats. 
To allow solutions with discontinuities, the Euler equations are discretized in the integral form 

( f(q) cos 4 + g(q) sin 4) ds = 0, sa** (4) 

where sZ* is an arbitrary subregion of R, dR* is the boundary of R*, and cos 4 and sin 4 are the x- 
and y-component respectively of the outward unit normal on dQ*. A straightforward and simple 
discretization of (4) is obtained by subdividing R into disjunct subregions Ri, (the finite volumes) 
and requiring that 

( 5 )  ( f (9) cos 4 + g(q) sin 4) ds = 0 s m . J  

for each finite volume separately. 
Using the rotational invariance of the Euler equations, 

where T(4) is the rotation matrix 

0 
0 cos4  s in4 

T(')= " o -sin4 O cos4 o 1 
(7) 

L o  0 0 11 
(5) can be rewritten as 

j T- '(4)f(T(4)q)ds =o. (8) 
a*,, j 

As finite volumes we consider (arbitrarily shaped) quadrilaterals. The subdivision into quadrilate- 
rals is such that Ri, 

Crucial in the discretization is the evaluation of the flux vector along d Q j .  Along each finite 
volume wall separately we assume the flux vector to be constant, and we assume it to be 
determined by a uniformly constant left and right state only. Hence (8) becomes 

and Q j k 1  are the neighbouring volumes of Q j  (Figure l(a)). 

Fi+l/z,j-Fi-1/2,j+Fi,j+1/2-Fi,j-1/2=0, (9) 

(10) 

with 

Fi+ 1/2,j=T-'(#i+ l/Z,j)f(T(+i+ l/z,j)qf+ 1 / 2 , j 7  T(+i+l/z,j)qI+ 1 / z 9 j Y i + 1 / 2 , j  
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Figure 1. Finite volume Ri.; (a) geometry; (b) state vectors 

and similar expressions for Fi- 1/2,j, Fi,j+ l , z  and Fi ,  j- Fi+ 1,2,  represents the transport of mass, 
momentum and energy per unit of time across dRi+ l , z , j .  In (lo), l i+1/2,  is the length of the finite 
volume wall i3Ri+l,2,j, and the superscripts 1 and r refer to the left and right side of dR,+l,2,J 
respectively (Figure l(b)). 

By considering the flux vector to be determined by a uniformly constant left and right state only, 
the actual flux evaluation is identical to the solution of a 1D Riemann problem. For this we use 
here a so-called approximate Riemann solver. Several approximate Riemann solvers exist.3 - 6  We 
have chosen Osher’s Riemann solver because of (i) its continuous differentiability and (ii) its 
consistent treatment of boundary conditions.’. (The continuous differentiability guarantees the 
applicability of a Newton-type solution technique, which is what we make use of.) Osher’s scheme 
is generally said to be complicated and expensive compared to other approximate Riemann 
solvers. Arguments against this can be found in Reference 8. 

The approximate solution of the 1D Riemann problem is called the evolution stage of a so- 
called projection-evolution scheme.’ Still to be filled in is the projection stage, i.e. the 
determination of the left and right states, such as qf+  112, and qi+ l j2 ,  in (10). Depending on the 
way the states qf+  and &+ 1,2, are chosen, the discretization is first- or second-order accurate. 
First-order accuracy is simply obtained by taking 

(1 1) 

Second-order accuracy can be obtained by, for example, the rc-schemes introduced by van Leer.’ 
Two well known drawbacks of the first-order accurate discretization are (i) its need for relatively 
fine grids in smooth flow regions and (ii) its strong smearing of discontinuities that are not aligned 
with the grid.” 

Second-order discretizations yield a strong improvement of both drawbacks. However, second- 
order discretized equations cannot be solved with the same good efficiency as first-order 
discretized equati0ns.l Further, when using a second-order discretization, spurious non- 
monotonicity (wiggles) may arise at discontinuities. l1 

Here we prefer the first-order accurate discretization, since (i) the transonic shock will be well 
aligned with the grid and (ii) the best possible efficiency is preferred. 

1 4i+ 1/2,j=qi,j, ~I+1,2,j=qi+l, j .  

2.2. Solution method 

2.2.1. Relaxation method. As a solution method for the first-order discretized equations we use 
collective symmetric point Gauss-Seidel relaxation. Point refers to the fact that during the update 
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of the state vector qi, all other state vectors are kept fixed. Collective refers to the fact that the 
update of qi, is done for all of its four components simultaneously. Further, symmetric means that 
after a relaxation sweep, i.e. after an update of all state vectors qi, j ,  a new sweep in the reverse 
direction is made. At each volume visited during a relaxation sweep we solve the four non-linear 
equations (9) by Newton’s method (local linearization). The most efficient relaxation is obtained 
by selecting a large tolerance for the Newton iteration so that in all but exceptional cases only a 
single Newton step is needed. 

2.2.2. Multigrid method. The solution method described so far is simple and robust but needs 
an acceleration. With point Gauss-Seidel relaxation a suitable acceleration technique is found in 
multigrid. As a very efficient and robust multigrid technique we use non-linear multigrid preceded 
by nested iteration.*- 

Let 

Fh ( q h )  = (12) 

denote the system of first-order discretized Euler equations. To apply multigrid, we construct a 
nested set of grids such that each volume on a coarse grid is the union of 2 x 2 volumes on the next 
finer grid (Figure 2). 

Let Rhl, Q h 2 , .  . . , Q,,be a sequence of nested grids with R,, the coarsest and Rh,the finest grid. 
Our multigrid solution of (12) can be divided into two successive stages. The first stage is nested 
iteration (or full multigrid) which is used to obtain a good initial solution on &,. The second and 
last stage is non-linear multigrid (or full approximation scheme) which is used to iterate until 
convergence. The first iterand for the non-linear multigrid iteration is the solution obtained by 
nested iteration. We will now discuss these stages in more detail. 

Nested iteration. The nested iteration starts with a user-defined initial estimate of qhl, the 
solution on the coarsest grid. To obtain an initial solution on a finer grid ah,+ ,, first the solution 
on the next coarser grid n h ,  is improved by a non-linear multigrid cycle. Hereafter this solution is 
interpolated to the finer grid a h l +  ,. These steps are repeated until the highest level (finest grid) has 
been reached. On a grid Qhl with an even number of volumes in both the i- andj-direction, the 
interpolation used to obtain the initial solution on a next finer grid is bilinear. For this purpose the 
grid Rh, is subdivided into disjunct sets of 2 x 2 volumes. The four state vectors corresponding with 
each set are interpolated in a bilinear way. Since each volume of R,, overlaps 2 x 2 volumes of 
Rh, + 1, 4 x 4 new state vectors are obtained on Rh,+ 1 .  (On a coarsest grid with an odd number of 
volumes in the i- and/or j-direction, the interpolation used is piecewise constant). 

Non-linear multigrid iteration. A single non-linear multigrid cycle is recurrently defined by the 
following steps: 

1. Improve on R,, the latest obtained solution q h l  by application of p pre-relaxation sweeps. 

Figure 2. Coarse grid volume and corresponding fine grid volumes 
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2. Computeon thenext coarsergridi2,,_, the right-handsider,,_, =~~l~I(qhl-I)-~~~-iFhl(qhl)r 
where Z:;-I is a so-called restriction operator. 

3. Approximate the solution of F h ,  - ( q h l -  = rhl-  by application of g non-linear multigrid 
cycles. Denote the approximation obtained as qh1- I .  

4. Correct the current solution by qhl =qhi + 1;;- -qhl- where z;;- is a so-called 
prolongation operator. 

5.  Improve again q h l  by application of q post-relaxations. 

Steps 2, 3 and 4 form the so-called coarse grid correction. (These three steps are skipped on the 
coarsest grid.) Notice that besides the discrete operator, the boundary condition treatment is also 
the same on all grid levels. The efficiency of a coarse grid correction depends in general on the 
coarseness of the coarsest grid (in general: the coarser, the better). 

The restriction operator Z 2 i - l  and the prolongation operator Z;;-l are defined by 

( l h I -  I ) i ,  j = (I;;- r h ~ h , j  ( r h l ) 2 i .  Z j  + ( l h 1 ) 2 i  - 1 ,  2 j + ( r h ~ ) 2 i ,  t j -  1 + ( r h ~ ) 2 i  - 1 , Z j -  1 9  (13) 

(14) 
(';;- I q h i -  t h i ,  t j = ( Z k  I qhi- I ) t i -  1 , 2 j = ( ' ; ;  - I qhr - I ) t i ,  Z j -  1 =('? - I q h r -  I ) t i -  1 , t j -  1 = ( q h l -  I ) i ,  j '  

Defining the transfer operators in this way, it can be verified that 

i.e. a coarse grid discretization of the Euler equations is a Galerkin approximation of the 
discretization on the next finer grid. This implies that the coarse grid correction reduces in an 
efficient way the low-frequency components in the defect. 

As values for 0, p and q we generally use at each level separately 0 = 1 and p = q = 1; i.e. as non- 
linear multigrid cycles we generally use V-cycles with one pre- and one post-relaxation. 

The complete solution process does not need any tuning. In Figure 3 an illustration is given of 
the structure of the multigrid method. A five-level multigrid strategy has been considered. Between 
each pair AB we have a non-linear multigrid cycle (V-cycle). In the nested iteration stage, between 
each pair BA we have the bilinear prolongation of the solution. For an account of the 
computational efficiency of the present and other methods we refer to Reference 13. 

3. GRID 

In Figure 4 graphs are given of the wind tunnel section considered. In Figure 4(a) a graph is given 
of the complete integration region. The graph shows a flat parallel inflow part, followed by a 
slender curved part up to the outlet. In Figure 4(b) a photograph is given of the test section in an 
opened wind tunnel. 

In order to obtain a good resolution of large local gradients (which we decided were important), 
we used grids with local refinements; grids with stretching in both the x- and y-direction (Figure 5). 

Figure 3. Schematic representation of a (five-level) multigrid strategy 
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Figure 4. Wind tunnel section: (a) complete integration region; (b) test section in opened wind tunnel 
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Figure 5. Stretched grid 

In the x-direction the grid is most refined at x,. The value of x, is adapted during the solution 
process. It is initialized to the x-location of the wind tunnel throat and adapted to the shock 
location during the nested iteration stage. The grid adaptation is simple. First, after each solution 
prolongation in the nested iteration stage, a search is made for the x-location of the maximum 
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velocity gradient at the lower wall, downstream of the throat. This location is assigned to x,. 
Hereafter, we generate the new grids. Without any correction, the states qi, are shifted together 
with the volumes Oi,j. In doing this, the quality of the finest grid solution as yielded by the nested 
iteration becomes worse. However, no significant deterioration of convergence rates has been 
observed. (The grid adaptation has no other effect than that for which it is intended, i.e. to reduce 
the mesh size at the shock wave in order to make it sharper.) 

4. BOUNDARY CONDITIONS 

4.1. Diflerent boundary conditions considered 

The boundary condition treatment must be correct both mathematically and physically. 
Mathematics prescribes how many conditions must be imposed at a boundary; physics prescribes 
what conditions should be imposed. 

The number of conditions to be imposed at  a boundary depends on the type of flow at that 
boundary. Types of flow to be considered here (and the corresponding number of boundary 
conditions to be imposed) are (i) subsonic inflow (three), (ii) subsonic outflow (one) and 
(iii) impermeable walls (one). The following conditions have been imposed. 

Upper and lower wall. At the impermeable upper and lower wall the boundary condition 
imposed is trivial: a zero normal velocity component. 

Inlet. Uniformly constant distributions u= uin, u = O  and c =  1, with c denoting the speed of 
sound, have been imposed. These distributions are motivated by the fact that the inlet part is flat 
and parallel. The 1D flow theory value, given a sonic throat, has been taken as a subsonic value 
for uin. 

Outlet. Because of the fact that the outlet part is non-flat and non-parallel, the outlet 
boundary condition cannot be as trivial as those at the inlet. The following possibilities 
have been considered: (i) h = hi, is uniformly constant, with h denoting the total enthalpy 
h = c2/(y  - 1) ++(u2 + u2); (ii) u/u = fqY); (iii) u = u(y); (iv) p =p(y) .  

The first possibility was motivated by the fact that with a known uniformly constant 
distribution of u, u and c at the inlet (i.e. with a known uniformly constant total enthalpy at the 
inlet), this boundary condition requires no knowledge of the non-uniform outlet flow. This 
because of the fact that for steady 2D Euler flows, with the total enthalpy at the upstream 
boundary known to be constant, only three differential equations describe the flow. The energy 
equation in its differential form may be replaced by the relation c2/(y - 1) +$u2 + u2)= hi, 
throughout the entire flow field. The present Euler code solves the full non-isenthalpic Euler 
equations. To allow the computation of non-isenthalpic Euler flows such as the flow through a 
propeller disc,I4 and in particular to allow a rapid extension to a Navier-Stokes code,”’ l 6  the 
simplifying property mentioned has not been exploited. 

The second possibility, with the flow direction specified, was motivated by its simplicity. A linear 
distribution of B(y) has been assumed, using the known flow direction at the lower and upper wall. 

The third possibility was also motivated by its simplicity. For this possibility we assumed the 
outlet flow to be a potential vortex flow. The relation u(y)r(y)=$oul has been applied, with $out 

uniformly constant and r (y)  the distribution of the radii of curvature of the streamlines. A linear 
distribution for the streamline curvature l/r(y) has been assumed, using the known curvature of 
the lower and upper wall. The value following from 1D flow theory, given a sonic throat and a 
transonic outflow with a shock of known constant strength, has been taken as a value for $,,,. A 
disadvantage of this boundary condition is its inconsistency in the case of a flow with a shock wave 
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of variable strength, which is what we have here. (It is a boundary condition which is always 
consistent in a potential flow model, but not in the Eulerian rotational flow model.) 

For the fourth possibility we used the equation of curvilinear motion 

with M ( y )  the Mach number distribution and #(y) the distribution of the angles between the 
streamlines and the x-axis. For l/r(y) and &(y) linear distributions have again been assumed, such 
that the flow fits the channel outlet. M(y) has been taken uniformly constant. Its value has been 
determined from 1D flow theory, again given a sonic throat and a transonic outflow with a shock 
of known constant strength. Using the corresponding value of p as the value for p at the lower wall, 
an initial value problem was obtained, which has been solved by means of a Runge- 
Kutta-Merson method. In the next section the well-posedness of each of these four outlet 
boundary conditions is investigated. There a choice is made for the outlet boundary condition to 
be applied. 

4.2. Well-posedness subsonic outlet boundary conditions 

Generally speaking, mathematically well-posed conditions to be imposed at a boundary 
are conditions for which the state at that boundary can be completed accurately. At a subsonic 
outlet the boundary condition must fix the single degree of freedom existing overthere. A subsonic 
outlet boundary condition can be represented as a 3D surface in a 4D state space. The smaller 
the angle M between the normal at this surface and the eigenvector corresponding to the negative 
eigenvalue of the Jacobian, u -c, the better the quality of the outlet boundary condition. Consider- 
ing the (p,  u, v, e)-space as state space, the eigenvector corresponding to the eigenvalue u - c  is 
r=(p,-c, 0, c(c/y-~))~.  For h, u/u, u and p specified respectively, the 3D surface mentioned, 
say B(q), is described by 

with h,, O,, u, and p e  constant. For the angle 01 it holds that cos01ccVB-r, with V=(d/dp, a/&, 
alav, alae)'. For h, v/u, u and p specified respectively, we find 

From (18a) and (18b) it can be seen that for h and v/u specified, the vectors VB and r become 
orthogonal for u-c and v-0 respectively. The consequence of a nearly orthogonal VB and r is 
that a small change in either the boundary condition or the state inside the integration region near 
the outlet may cause a large change in the boundary state and hence in the flux across the outlet. 
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For a given state qo=(uo, uo, co, zo)T near the outlet, with ~ ~ = I n ( p ~ p ~ ~ ) ,  and the boundary 
conditions specified by (17a)-(17d) respectively, the effect of a perturbation in qo will be shown. 

The state at the outlet is q =(u, uo, c, z ~ ) ~ ,  with, for boundary conditions (17aH17d) respectively, 

c=-{ Y-1 u~+-co+/[(Y 2 + I ) ( h , - - + u ; ) - q (  uo+-coy]} ,  2 (19a) 
Y+l Y-1 Y-1 

and either 

to complete. 
With V = (a/&,, d/duo, dldc,, d/c?zo)T we find for (19aH19d) respectively 

Y-1 2 Y  vc=-( Y-1 2 0 )  - - - ( . i - - lu+c , - - -u ,u+-c ,~  7-1 1 Y+l , (20a) 
2 y + l  1,03-, Y+l  y + l c - u  2 

v u  = (0, UIU, O,O)T, (20b) 

v u = o ,  (204 

vc = (0, 0, 0, c/2y)T, (204 
where we have substituted q =qo into (20a) and (20b) for simplicity. It can be seen that the gradient 
pairs (20a) and (20b) become infinitely large in the aforementioned limit cases (u+c for h specified 
and u-+O for u/u specified). Flow computations with h specified and u/u specified showed these 
outlet boundary conditions to be ill-posed indeed. This was not the case with the two other 
boundary conditions. 

Because of its better consistency with the Euler flow model, the boundary condition with p 
specified has been preferred to the boundary condition with u specified. 

5. RESULTS 

The great slenderness of the wind tunnel section led to a coarsest grid with a relatively large 
number of volumes in the longitudinal direction. By using a 56 x 8 grid as the finest grid and a 
four-level multigrid strategy, a 7 x 1 grid was the coarsest grid (Figure 6). (The dashed lines in 
Figure 6 indicate the lower and upper wall of the wind tunnel section.) 

As a consequence of this relatively fine coarsest grid, the number of non-linear multigrid cycles 
required was somewhat larger than the few cycles which are supposed to be necessary for optimal 
multigrid efficiency. To slightly improve the multigrid convergence properties, we increased the 
number of pre- and post-relaxations performed on the coarsest grid. 

As flow problems we considered a non-choked flow with Mu = 1-15, Mu being the Mach number 
just upstream of the shock wave, and a choked flow with Mu = 1-37. 

Convergence histories obtained for both test cases are given in Figure 7. In both convergence 
histories the single-grid history is given as well. The convergence histories are given by graphs of 
the residual ratio Z f = = ,  li$(i)lmax/Ef=l (r:(i)Jmax versus the number of work units. Here lri(i)lmax 
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8 ,  

x (mml 

Figure 6. Family of grids: (a) 56 x 8 grid; (b) 28 x 4 grid; (c) 14 x 2 grid; (d) 7 x 1 grid 

denotes the maximum absolute value over all volumes of the ith component of the residual 
r: = F,(q:), and n denotes the nth work unit. A work unit is defined as one multigrid cycle, and for 
the single-grid computation as the equivalent number of fine grid relaxation sweeps. (The rather 
poor multigrid acceleration obtained for the choked flow may have been caused by too low an 
accuracy of the prolongation operator I k; ,.) 

Finest grids and lower surface pressure distributions obtained for Mu = 1.15 and Mu = 1.37 are 
shown in Figure 8. The open circles in the pressure distributions correspond to computed 
pressures, the full circles to measured pressures. A very satisfactory agreement is of course found 
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work units (4 work units (b) 
Figure 7. Convergence histories (-, rnultigrid; ------, single grid): (a) M ,  = 1.15; (b) M u =  1.37 

away from the wall and shock wave. Yet an important result-the pressure rise across the shock 
wave at the wall-is also predicted in a satisfactory way. The latter indicates that the Euler code 
may be exploited for designing experimental set-ups like this. From the finest grids and surface 
distributions obtained, it can be seen that for both flows the grid adaptation is good. Clearly 
visible for Mu = 1.37 is the occurrence of an after-expansion. Since a first-order accurate Osher- 
type discretization yields solutions without spurious non-monotonicity, the after-expansion 
occurring for Mu= 1.37 is not a numerical artefact but indeed a correct part of the Euler flow 
solution. 

Further, for both the choked and non-choked flow, a comparison is made between the Mach 
number distributions obtained with the Euler code and those obtained by holographic inter- 
ferometry. In Figure 9 the Mach number distributions are given as obtained for the entire test 
section. In Figure 10 a detail of both distributions is compared with the corresponding 
interferometric result. It appears that the computational and experimental results show a perfect 
quantitative agreement away (of course) from the wall and shock wave. 

The differences between computational and experimental results can also be exploited. Given 
an Euler code which has proved to be reliable, its results can be considered confidently as 
experimental results with viscosity and heat conduction switched off. Its results can be used for 
identifying simple viscous phenomena and, in particular, complicated viscous-inviscid phenom- 
ena. The present Euler code has proved to be  reliable."^ 13, l 4  Here it shows for instance that the 
downstream supersonic pocket and the A-shock (at Mu = 1.37) are indeed viscous-inviscid 
phenomena and that the shock wave has been displaced slightly upstream by viscous effects. 

6. CONCLUSIONS 

For the steady 2D non-isenthalpic Euler equations, an outlet boundary condition with total 
enthalpy or flow direction specified yields a mathematically ill-posed problem, whereas an outlet 
boundary condition with static pressure specified yields a mathematically well-posed problem. 

The convergence rates obtained are not optimal from the viewpoint of multigrid techniques, 
though still very good from the viewpoint of almost any other solution technique. The multigrid 
convergence behaviour suffered somewhat from the relatively large number of volumes in the 
streamwise direction on the coarsest grid. 
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Non-oscillatory solutions with sharp shocks have been obtained. Automatic grid adaptation 
during the nested iteration works well. Away from the walls and shock wave, the agreement 
between computational and experimental results is good. A main advantage of the solution 
method is that it is parameter-free; it needs no tuning. 

The usefulness of a reliable Euler code in research on viscous-inviscid interactions is twofold. It 
may be used (i) as a tool for designing (and redesigning) an experimental set-up and (ii) as a tool for 
understanding complicated experimental results. Given the recent availability of very reliable 
(and, moreover, very efficient) Euler codes, this use might become important in near-future 
research. 
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